341 research outputs found

    Low energy neutron propagation in MCNPX and GEANT4

    Full text link
    Simulations of neutron background from rock for underground experiments are presented. Neutron propagation through two types of rock, lead and hydrocarbon material is discussed. The results show a reasonably good agreement between GEANT4, MCNPX and GEANT3 in transporting low-energy neutrons.Comment: 9 Figure

    Some Practical Applications of Dark Matter Research

    Full text link
    Two practical spin-offs from the development of cryogenic dark matter detectors are presented. One in materials research, the other in biology.Comment: 8 pages,4 figure

    DAMA detection claim is still compatible with all other DM searches

    Full text link
    We show that the annual modulation signal observed by DAMA can be reconciled with all other negative results from dark matter searches with a conventional halo model for particle masses around 5 to 9 GeV. We also show which particular dark matter stream could produce the DAMA signal.Comment: Talk given at TAUP2005, Sept. 10-14 2005, Zaragoza (Spain). 3 pages, 4 figure

    CdWO4 scintillating bolometer for Double Beta Decay: Light and Heat anticorrelation, light yield and quenching factors

    Full text link
    We report the performances of a 0.51 kg CdWO4 scintillating bolometer to be used for future Double Beta Decay Experiments. The simultaneous read-out of the heat and the scintillation light allows to discriminate between different interacting particles aiming at the disentanglement and the reduction of background contribution, key issue for next generation experiments. We will describe the observed anticorrelation between the heat and the light signal and we will show how this feature can be used in order to increase the energy resolution of the bolometer over the entire energy spectrum, improving up to a factor 2.6 on the 2615 keV line of 208Tl. The detector was tested in a 433 h background measurement that permitted to estimate extremely low internal trace contaminations of 232Th and 238U. The light yield of gamma/beta, alpha and neutrons is presented. Furthermore we developed a method in order to correctly evaluate the absolute thermal quenching factor of alpha particles in scintillating bolometers.Comment: 8 pages 7 figure

    Simulation-based design study for the passive shielding of the COSINUS dark matter experiment

    Get PDF
    The COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) experiment aims at the detection of dark matter-induced recoils in sodium iodide (NaI) crystals operated as scintillating cryogenic calorimeters. The detection of both scintillation light and phonons allows performing an event-by-event signal to background discrimination, thus enhancing the sensitivity of the experiment. The choice of using NaI crystals is motivated by the goal of probing the long-standing DAMA/LIBRA results using the same target material. The construction of the experimental facility is foreseen to start by 2021 at the INFN Gran Sasso National Laboratory (LNGS) in Italy. It consists of a cryostat housing the target crystals shielded from the external radioactivity by a water tank acting, at the same time, as an active veto against cosmic ray-induced events. Taking into account both environmental radioactivity and intrinsic contamination of materials used for cryostat, shielding and infrastructure, we performed a careful background budget estimation. The goal is to evaluate the number of events that could mimic or interfere with signal detection while optimising the geometry of the experimental setup. In this paper we present the results of the detailed Monte Carlo simulations we performed, together with the final design of the setup that minimises the residual amount of background particles reaching the detector volume.Peer reviewe

    Composite Inelastic Dark Matter

    Get PDF
    Peaking consistently in June for nearly eleven years, the annual modulation signal reported by DAMA/NaI and DAMA/LIBRA offers strong evidence for the identity of dark matter. DAMA's signal strongly suggest that dark matter inelastically scatters into an excited state split by O(100 keV). We propose that DAMA is observing hyperfine transitions of a composite dark matter particle. As an example, we consider a meson of a QCD-like sector, built out of constituent fermions whose spin-spin interactions break the degeneracy of the ground state. An axially coupled U(1) gauge boson that mixes kinetically with hypercharge induces inelastic hyperfine transitions of the meson dark matter that can explain the DAMA signal.Comment: 5 pages (two-column), 1 figure, revised version, references adde

    A Textured Silicon Calorimetric Light Detector

    Full text link
    We apply the standard photovoltaic technique of texturing to reduce the reflectivity of silicon cryogenic calorimetric light detectors. In the case of photons with random incidence angles, absorption is compatible with the increase in surface area. For the geometrically thin detectors studied, energy resolution from athermal phonons, dominated by position dependence, is proportional to the surface-to-volume ratio. With the CaWO4 scintillating crystal used as light source, the time constants of the calorimeter should be adapted to the relatively slow light-emission times.Comment: Submitted to Journal of Applied Physic

    The ν\nu-cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering

    Full text link
    We discuss a small-scale experiment, called ν\nu-cleus, for the first detection of coherent neutrino-nucleus scattering by probing nuclear-recoil energies down to the 10 eV-regime. The detector consists of low-threshold CaWO4_4 and Al2_2O3_3 calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of γ\gamma, neutron and surface backgrounds. A first prototype Al2_2O3_3 device, operated above ground in a setup without shielding, has achieved an energy threshold of 20{\sim20} eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5σ\sigma) within a measuring time of 2{\lesssim2} weeks. Furthermore, a site at a thermal research reactor and the use of a radioactive neutrino source are investigated. With this technology, real-time monitoring of nuclear power plants is feasible.Comment: 14 pages, 19 figure
    corecore